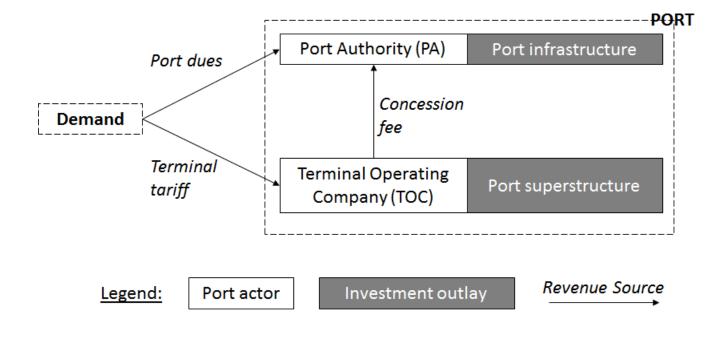


27.09.2017 – VI Meeting: Intl Economics

Capacity investment size and timing in a port under uncertainty and congestion

Drs. Matteo Balliauw

CONTENTS


- 1. Introduction and Problem description
- 2. Methodology
- 3. Results
- 4. Conclusions and Future research

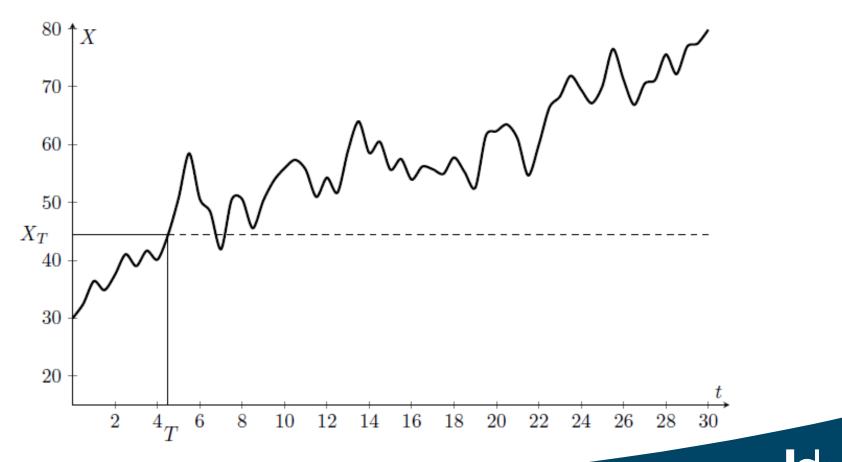
INTRODUCTION AND PROBLEM DESCRIPTION (1)

- Investments in port capacity:
 - Focus on infrastructure (superstructure needed too)
 - Uncertainty: focus on demand uncertainty
 - Irreversible
 - Large sums of money
- The context:
 - One single investment in new capacity (no expansion)

INTRODUCTION AND PROBLEM DESCRIPTION (2)

- Port structure:
 - PA vs TOC
 - Privately vs Publically held

INTRODUCTION AND PROBLEM DESCRIPTION (3)


- Trade-off in port capacity
 - Undercapacity: waiting times ~ congestion cost
 - Overcapacity: too high investment cost

METHODOLOGY (1)

- Real options to valuate flexibility:
 - Size and timing of investment
 - Output flexibility

METHODOLOGY (2)

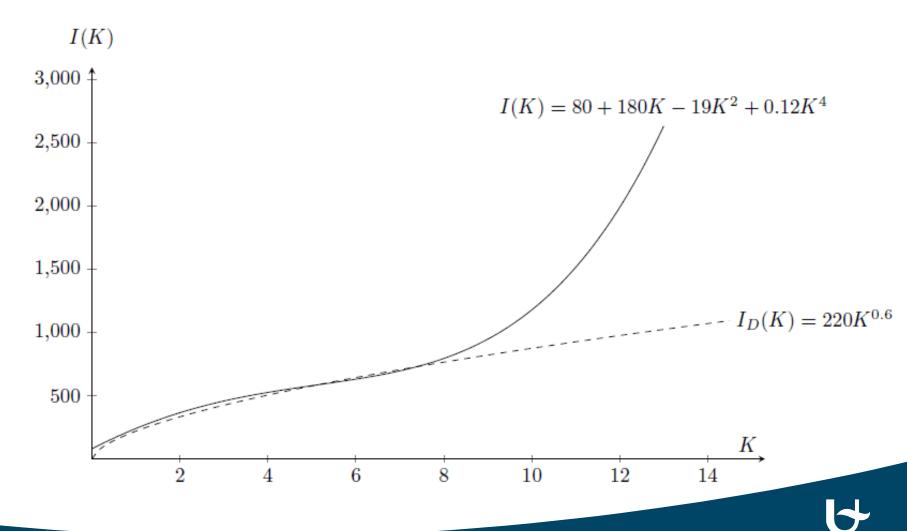
- Price: p(t) = X(t) Bq(t): X = intercept, q = throughput
- GBM for X (timing parameter): $dX(t) = \mu X(t)dt + \sigma X(t)dZ(t)$

METHODOLOGY (3)

 Model includes congestion cost: (adds to literature)

$$A \frac{X}{B} \left(\frac{q}{K}\right)^2$$

- K = total capacity
- q/K = occupation rate
- X/B = maximal demanded throughput
- A = monetary scaling factor (expression of aversion to waiting time)


METHODOLOGY (4)

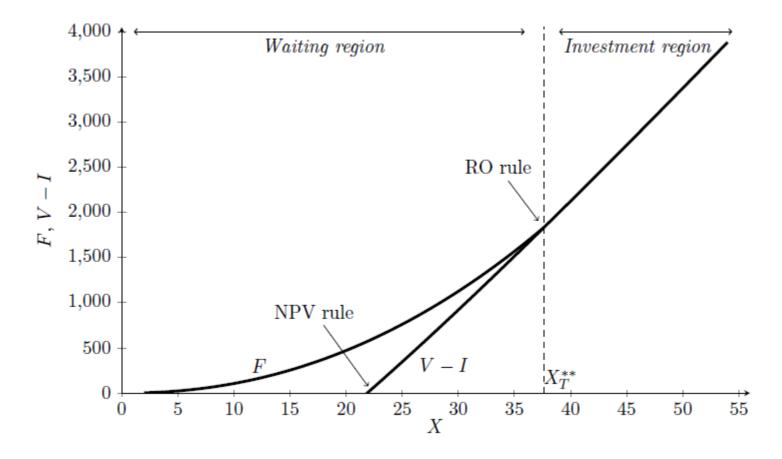
- Multiple actors:
 - Split income, operational and investment cost between PA and TOC with shares
 - > Concession fee = % of TOC operational π

• Public PA: Local benefits $LB = \pi_{PA} + \lambda q$ $\lambda(= 0.4) = \text{spillover benefit per unit } q$ Social Welfare SW = LB + CS $CS = \text{consumer surplus, i.e. } Bq^2/2$ PA objective function $\Pi_{PA} = (1 - s_L - s_G) \cdot \pi_{PA} + s_L \cdot LB + s_G \cdot SW$ $s_L(\in [0; 1]) = \text{share of PA owned by local government}$ $s_G(\in [0; 1]) = \text{share of PA owned by central government}$

METHODOLOGY (5)

• Investment function: economies of scale + boundary

METHODOLOGY (6)


- Optimal q as a function of X(+) and K(+), K is upper limit
- Dynamic programming:
 - Bellman equation and Itô's Lemma:
 - Find discounted sum of cash flows = project value

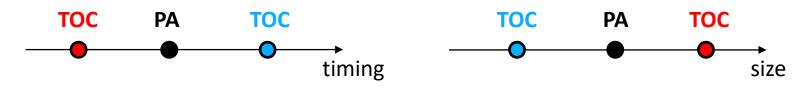
METHODOLOGY (7)

- Maximising the option to find optimal X(K/+): $F(X) = \max\{e^{-rdt}\mathbb{E}(F(X) + dF(X)), \max_{K}[V(X,K) - I(K)]\}$
- Optimal K(X/+): $v(X, K) \frac{dI(K)}{dK} = 0$
- Joint optimum:
 - Timing (X, threshold) and size (K, capacity)

METHODOLOGY (8)

• RO output graphically

METHODOLOGY (9)


- Stepwise approach for TOC and PA:
 - 1. Find q^{opt} for TOC (determines throughput)
 - 2. Find project V for TOC
 - 3. Option value: (X, K) for TOC
 - 4. Find project V for PA (taking q^{opt})
 - 5. Option value: (X, K) for PA
 - 6. Determine or negotiate joint decision

RESULTS (1)

- Positive relationship between size and timing
- More demand uncertainty: Bigger, Later investment
- Higher cost of congestion: idem
- Higher operational and investment cost: idem
- Higher economic growth: idem
- More public money involved: Earlier investment

RESULTS (2)

- TOC and PA may have different optimal investment
- Uniform decision required (concession agreement)
 - Negotiation interval
 - Negotiation power

- Concession fee has an impact:
 - Low fee? (PA: later + more,) TOC: earlier + less
 - Fee equaling size or timing of both actors
 - 2 PA strategies (negotiate or force)

CONCLUSIONS AND FUTURE RESEARCH

- Impact of uncertainty
- The role of congestion aversion in a port
- Multiple actors and owners
- Expand models:
 - Competition (Game theory)
 - Port expansion and Time to build
 - Phased investment

Thank you for your attention! Questions?

Contact:

Matteo Balliauw

Matteo.Balliauw@uantwerpen.be +32 3 265 41 60

