

6th Meeting on International Economics

Freight Transport in Europe: Facts & Challenges

Understanding port hinterlands; findings from an empirical analysis of Spain

Jordi Caballé, Universidad de Málaga
Peter de Langen, Copenhagen Business School
Fátima Pérez, Universidad de Málaga

Purpose

- This paper analyses the determinants of a port's competitiveness in hinterland regions, based on an empirical study of Spain.
- This study extends previous work by including novel potential explanatory variables for the market shares of ports in hinterlands.
- The empirical analysis shows that all hypothesized variables influence the market share of a port in a specific hinterland region with the signs as expected.

Introduction and literature review

- The analyses of what hinterlands are served by ports has attracted scholarly attention since early 20th century (Chisholm et al., 1915, *Handbook of Commercial Geography*).
- Previous works have found that the hinterland distance from the port, maritime connectivity, and freight rates are a determinant of port choice.
- Other works show that intermodal connections influence the size of port hinterlands...
- The case of Spain has also attracted interest over the years due to the fierce competition between a large number of ports and the interesting feature of Spain as a peninsula.

Determinants of markets shares of ports in hinterland regions

- Road distance to the region relative to the distance from other ports.
- Maritime distance relative to the maritime distance from other ports.
- Maritime connectivity of the port.
- Intermodal connectivity: only rail transport in Spain, as it has no inland waterways.
- Presence of a lock, which affects the maximum size of ships and the time to reach the port.
- Transshipment orientation. A variable is added for ports with >90% of transshipment.
- Throughput volume of the port, based on the notion of scale economies in port operations, leading to higher productivity and lower costs in larger ports.

Database based on data for Spain

- Our database was constructed with data obtained from Spanish Customs Agency, that provides yearly data on shipments (imports/exports) between all Spanish provinces and all third countries, including the volume, value, transport mode, Spanish port of departure, and destination country.
- The number of observations was determined by the number of Spanish peninsular provinces, the number of ports that handle containers, and the number of destination country regions.
- Data do not include information on how goods are shipped; i.e. whether by bulk, Ro-Ro, or container cargo.

Empirical analysis based on data for Spain

$$U_{p,h,wr} = \alpha_0^{p,h} + \alpha_1 R D_{p,h} + \alpha_2 M D_{p,wr} + \alpha_3 M C_p + \alpha_4 I C_{p,h} + \alpha_5 Lock_p + \alpha_6 T S_p + \alpha_7 T E U_p$$

Model		Coeficientes no		Coeficientes	T	Sig.
		estandarizados		tipificados		
		В	Error típ.	Beta		
1	(Constant)	-,389	,051		-7,607	,000
	RDRel	-,299	,011	-,356	-26,715	,000
	MDRel	-,037	,010	-,050	-3,766	,000
	MC	,119	,018	,189	6,518	,000
	IC	,130	,012	,144	10,809	,000
	Lock	-,040	,010	-,053	-3,974	,000
	TS	-,136	,012	-,181	-11,451	,000
	TEULog	,707	,066	,314	10,779	,000

• R-squared: 0,368

• Adj. R-squared: 0,366

Discussion of the findings

- Road distance has a significant negative effect on the market share of a port.
- Maritime distance also significantly affects the market share of a port for a specific region.
- The higher maritime connectivity, the higher the market share.
- The presence of an intermodal service increases the market share.
- The presence of a lock and transshipment focus are also significant reducing the market share.
- Total throughput (TEU) is also significant (economies of scale).

References

- Anderson, C. M., Opaluch, J. J., and Grigalunas, T. A. (2009). The demand for import services at US container ports. Maritime Economics & Logistics, 11(2), 156-185.
- Blumenhagen, D., 1981. Containerisation and hinterland traffic. Maritime Policy and Management 8, 176-206
- Chisholm, G. G., Stamp, L. D., & Gilmour, S. C. (1915). Chisholm's handbook of commercial geography. Longmans. First edition published in 1889.
- Ferrari, C., Parola, F., and Gattorna, E. (2011). Measuring the quality of port hinterland accessibility: The Ligurian case. Transport Policy, 18(2), 382-391.
- Halim, R. A., Kwakkel, J. H., and Tavasszy, L. A. (2016). A strategic model of port-hinterland freight distribution networks. Transportation Research Part E: Logistics and Transportation Review.
- De Langen, P. W. (2007). Port competition and selection in contestable hinterlands; the case of Austria. European Journal of Transport and Infrastructure Research, 7(1), 1-14.
- Luo, M., and Grigalunas, T. A. (2003). A spatial-economic multimodal transportation simulation model for US coastal container ports. Maritime Economics & Logistics, 5(2), 158-178.
- Malchow, M. B., and Kanafani, A. (2004). A disaggregate analysis of port selection. Transportation Research Part E: Logistics and Transportation Review, 40(4), 317-337.
- Martínez Moya, J., and Feo Valero, M. (2016). Port choice in container market: a literature review. Transport Reviews, 1-22.into the US. Transportation Research Part E: Logistics and Transportation Review, 48(4), 881-895.
- Notteboom, T. and J-P Rodrigue, 2005. Port Regionalization: Towards a New Phase in Port Development. Maritime Policy and Management 32(3), 297-313.
- Sargent, A.J., 1938. Seaport and hinterlands. Adam and Charles Balck: London
- Tavasszy, L., Minderhoud, M., Perrin, J. F., and Notteboom, T. (2011). A strategic network choice model for global container flows: specification, estimation and application. Journal of Transport Geography, 19(6), 1163-1172.
- Tongzon, J. L. (2009). Port choice and freight forwarders. Transportation Research Part E: Logistics and Transportation Review, 45(1), 186-195.
- Veldman, S., Garcia-Alonso, L., and Vallejo-Pinto, J.A. (2011). Determinants of container port choice in Spain. Maritime Policy and Management: The flagship journal of international shipping and port research, 38:5, 509-522
- Wiegmans, B., Van Der Hoest, A., Notteboom, T., 2008. Port and terminal selection by deep-sea container operators. Maritime Policy and Management 35(6), 517-534
- Weigend, G.G., 1958. Some elements in the study of port geography. Geographical Review 48, 185-200

Gracias por su atención

www.pl-advisory.com