Migration and the Structure of Manufacturing Production. A view from Italian Provinces

Elizabeth J. Casabianca^{*}, **Alessia Lo Turco**[◊], Daniela Maggioni[♣] * Prometeia; [◊] Università Politecnica delle Marche; [♣] Università di Venezia

UJI, 27 September 2019

8th MIE 1 / 28

Motivation and Research question

Motivation

- production specialisation matters for growth perspectives (Hausmann et al., 2007)
- large inflow of migrants from low to high income economies
- migration affects the labour markets of the receiving countries

Research question

What is the impact of immigration on the product mix of the host economy?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Migration and Production: why should there be a link

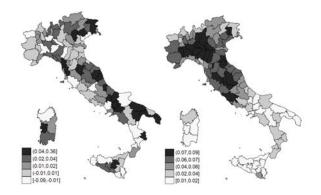
- Rybczynski effect
- Other effects, according to foreign workers' skills and tasks:
 - Low skilled migration
 - the access to cheap migrant labour may relax production constraints, release resources, thus stimulating investments/innovation
 - Highly educated and skilled migration
 - ★ transfers of new capabilities and skills (Bahar and Rapoport, 2017)

・ロト ・四ト ・ヨト ・ヨト ・日・ うへつ

Underlying mechanisms

- Reshuffling of resources across products
- Offshoring/migration substitutability
- Creation of new firms in relatively more/less labour/skill intensive industries

The Literature


- Literature on the factor mobility and countries' product specialisation (Harding and Javorcik, 2012; Swenson and Chen, 2014; Bahar et al., 2013)
- Migration and Innovation/Knowledge Flows (Bosetti et al., 2015; Bahar and Rapoport, 2017; Bratti and Conti, 2017).
- Migration and Production: effects on capital intensity and productivity (Kangasniemi et al., 2012; Orefice et al., 2017; Lewis, 2011); within- and between industry adjustments (Card and Lewis, 2005; Gonzalez and Ortega, 2011; Dustmann and Glitz, 2008; Gandal, 2004; Bratsberg et al. 2018);
 - ► For Italy: Bettin et al., 2014; De Arcangelis et al., 2015.

Our Contribution

- Delve into the changes brought about by migrants to the manufacturing product mix
 - we inspect whether migrants heterogeneously affect the production of goods according to their capital (skill/sophistication) intensity regardless of the industry they belong to
- Work in progress:
 - we explore some underlying mechanisms: substitution of imports, new firms' creation
- Focus on Italy, a peculiar developed country: marginal role for high skilled migration and important share of labour intensive productions

Why Italy?

- Growing flows of migrants in the 90s and 2000s. From 2.7% in 2003 to around 7.5% in 2011
- In 2011, about 95% of migrants are from low and middle income countries.
 - Changes in Capital Intensity (left) and Migration (right) across Italian Provinces (2003-2011)

Why Italy? Some Flagships of Italy's Manufacturing Production

Anecdotal Evidence - Making a Shoe I

Figure: Making Soles

Anecdotal Evidence - Making a Shoe II

Figure: Making Uppers

8th MIE 9 / 28

Data

Migration Data

 resident population by nationality 2003-2011. ISTAT GeoDemo, demographic balances

Data for computing province capital intensity and other product level indicators:

- Exports (proxy for production) at province-product (HS4d) level. Source: ISTAT COE dataset
- goods' capital (and skill) intensity: UNCTAD HS1996, year 1998 (and 2002);
- goods' PRODY (Hausmann, Hwang and Rodrik, 2007): trade by country and HS96 from BACI and countries' per capita GDP from World Bank WDI

$$K_{pt} = \sum_{c} rac{X_{cp}}{\sum_{c} rac{X_{cp}}{X_{c}}} imes rac{CapitalStock_{c}}{Workers_{c}}$$

NUTS2 and NUTS3 Level Control Variables: ISTAT and Eurostat

Product/Sector Definition: more than 1,000 4-digit HS products Geographical Dimension: 103 Italian NUTS 3 regions (provinces) Period of the Analysis: 2003-2011

Empirical Model

$$K_{p, t} = \alpha + \beta Migrants_{p, t-1}^{share} + \gamma X_{p, t-1} + \delta_p + \lambda_t + \epsilon_{pt}$$

- $K_{p, t}$ weighted average capital intensity of province p at time t
- $Migrants_{p, t-1}^{share}$ share of migrants resident in province p at time t-1 over total population. Total and split by country of origin
- X_{p, t-1}: time-varying regional and provincial covariates
- δ_p : province fixed effects
- λ_t : year fixed effects

Estimation: Fixed effects and IV (Altonij&Card, 1991; Card, 2001) over the period 2003-2011

$$IVperm_{94} = \sum_{c=1}^{N} w_{pc}^{1994} * \frac{Migrants_{ct}}{Population_{p}^{1994}}$$
(1)

8th MIE

11 / 28

 w_{pc}^{1994} share of residence permits released to migrants from country c in province p in 1994 over the total permits released in the province

Baseline Results

	[1] OLS	[2] FE	[3] FE cluster	[4] IV	[5] - FE
				Second	First
$Migrants_{p, t-1}^{share}$	-1.318*	-1.754***	-1.754***	-2.571**	
- p, <i>i</i> -1	[0.675]	[0.529]	[0.503]	[1.009]	
IVperm 94		• •	• •	• •	0.352***
					[0.066]
Controls	yes	ves	yes	yes	yes
Observations	927	927	927	927	927
R-squared	0.077	0.134	0.134	0.039	
# of NUTS3		103	103	103	103
SheaR2					0.252
F-test					28.49

(日)

Economic Magnitude of the Effect

A one standard deviation increase of the presence of migrants within a province would reduce the capital intensity of local manufacturing production by 0.042 which corresponds to 1/3 of the capital intensity overall standard deviation and 95% of its within standard deviation.

The Effect of the observed Migration Increase on the Production Structure

14 / 28 Casabianca, Lo Turco, Maggioni Migration & Production Structure

Anecdotal Evidence: back to uppers with 3% \Uparrow in migration

15 / 28 Casabianca, Lo Turco, Maggioni Migration & Production Structure

Alternative IVs

	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
	Second	First	Second	First	Second	First	Second	First
$Migrants_{p, t-1}^{share}$	-2.683**		-2.798*		-1.966**		-2.109**	
<i>p</i> , <i>i</i> – .	[1.119]		[1.430]		[0.981]		[1.002]	
IVperm 91 94	• •	0.319***	• •					
		[0.067]						
IVperm 91				0.153***				
				[0.051]				
IVperm ^{EU12}						4.484***		
						[0.949]		
IVperm ^{EU12} 9194								4.842***
								[0.904]
IVperm ^{EU1 2} 91								
Controls	yes	yes	yes	yes	yes	yes	yes	yes
Observations	927	927	927	927	927	927	927	927
R-squared	0.036		0.033		0.050		0.048	
# of NU⊤S3	103	103	103	103	103	103	103	103
SheaR2		0.218		0.0885		0.149		0.152
F-test		22.68		9.23		22.32		28.71

★ E → E → Q ○
8th MIE 16 / 28

< □ > < □ > < □ > < □ > < □ > < □ >

Alternative Second Stage Indicators

	Prody		Skill Ir	Skill Intensity		Capital Intensity 2002	
	[1]	[2]	[3]	[4]	[5]	[6]	
	IV-FE	FE	IV-FE	FE	IV-FE	FE	
Migrants ^{share}	-3.897** [1.558]	-1.980*** [0.600]	-0.669** [0.310]	-0.372** [0.167]	-2.276** [0.013]	-2.195** [0.577]	
Controls	yes	yes	yes	yes	yes	yes	
Observations	927	927	927	927	927	927	
R-quared	0.003	0.073	0.005	0.121	0.043	0.128	
# of NUTS3	103	103	103	103	103	103	
SheaR2	0.252		0.252		0.252		
F-test	28.49		28.49		23.49		

Long Differences - $\Delta K_{2011-2003}$

	OLS	IV	/
		Second	First
	[1]	[2]	[3]
$\Delta Migrants^{share}_{p,2011-2002}$	-2.758***	-3.377***	
<i>p</i> ,2011_2002	[0.830]	[1.097]	
ΔIV perm ₉₄	[0.000]	[1:051]	0.340***
			[0.077]
Controls	yes	yes	yes
Observations	103	103	103
R-squared	0.266		
SheaR2			0.247
F-t est			19.66

(日) (同) (三) (

Split by Country of Origin

	FE	[1]	[2] IV-FE	[3]
		Second	Fi	rst
			Migrants ^{share}	Migrants ^{share}
Migrants ^{share}	9,506	9,546		
High	[6.986]	[18.053]		
Migrants ^{share}	1.835***	2 4 4 2 * *		
Low	[0.543]	[1.101]		
IVperm 94 High			0.419***	-0.764
			0.129	[1.393]
IVperm _{94 Low}			0.000	0 0364***
			[0.003]	[0.064]
Controls	yes	yes	yes	yes
Observations		927	927	927
R-squared		0.035		
# of NUTS3		103	103	103
SheaR2 _{High}			0.2	
F-test _{High}			7.44	
SheaR2 _{Low}				0.224
F-test _{Low}				15.95
Cragg Donald			85	895

(日) (同) (三) (

Province-Product Level Evidence

	FE	IV-	FE
		Second	First
	[1]	[2]	[3]
K _g * Migrants ^{share}	-2.622*** [0.884]	-3.469*** [1.257]	
Kg * IVperm ₉₄			0 358*** [0 057]
Observations	505520	505520	505520
R-squared	0.853		
Fixed Effects			
NUTS3*year	yes	yes	yes
HS4*year	yes	yes	yes
NUTS3*HS4	yes	yes	yes
SheaR2			0.237
F-test			131

 K_g : capital intensity of HS4d product g

< □ > < 同 >

Further Robustness

- Brain drain
- Local financial development
- Capital Intensity of Imports
- Tertiary Education
- Excluding top three main migration origins from province export flows
- Dynamic panel data model
- Spatial lag
- Area-year dummies
- Exclusion of consumption goods
- HS-6digit product level indicators
- Industry level indicators no effect
- Exclusion of crisis/Sub-period estimates

Further Results

Effect mainly driven by

- District Areas
- Provinces with initial low immigration

Further Results

- no effect on the level of exports
- no effect on the distribution of the capital intensity of products
- no effect on the emergence of new comparative advantage export products
- strengthening of extant comparative advantage in export products

In search of the underlying mechanisms: Import Substitution - Province-Product Level

Dependent Variable: (Imports/VA)gpt; Sample: goods produced in 2002

	Migrants			Migrant Firms			
	FE	- IV-FE		FE	- IV-FE		
		Second	First		Second	First	
K _g * Migrants ^{share}	0.001	0.003**		0.000	0.002**		
5	0.001	0.001		[0.000]	0.001		
Kg * IVperm94			0.348***			0.506***	
			[0.007]			[0.020]	
obs	502,740	502,740	502,740	502,740	502,740	502,740	
R-squared	0.847			0.825			
SheaR		0.228			0.0748		
F-test		2525			651.9		
Fixed Effects							
NUTS3*year	yes	yes	yes	yes	yes	yes	
HS4*year	yes	yes	yes	yes	yes	yes	
NUTS3*HS4	yes	yes	yes	yes	yes	yes	

 K_g : capital intensity of HS4d product g

Conclusions and Work in Progress

Concluding remarks

- Migration reduces the capital intensity of provincial manufacturing production. The effect is driven by migrants from LMI countries, by district areas and by provinces with initially low levels of immigration
- Mechanisms:
 - the presence of migrants eases the maintenance/reintroduction of production of labour intensive goods

Work in progress

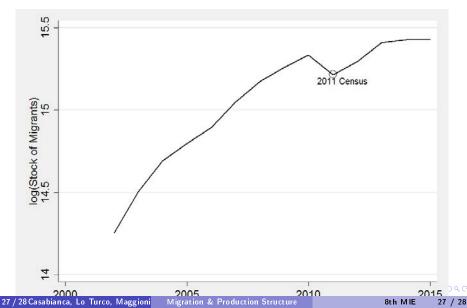
• creation of new firms

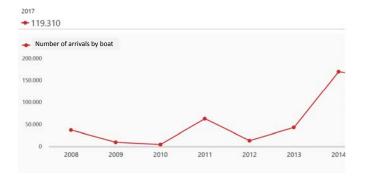
Thank You

< ≣ > ≣ ৩৭৫ 8th MIE 25 / 28

< □ > < 同 >

< ∃ >


Changes in Statistical Methods for Detecting Foreign Residents


ヨー わくで

8th MIE 26 / 28

Changes in Statistical Methods for Detecting Foreign Residents

Arrivals by boat Italy

э 8th MIE 28 / 28